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1 Introduction

It is well known that the solar and atmospheric neutrino data are consistent with so-called

tri-bimaximal (TB) mixing [1],

UTB =




− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2


 . (1.1)

The ansatz of TB lepton mixing matrix is interesting due to its symmetry properties which

seem to call for a possibly discrete non-Abelian family symmetry in nature [2]. There has

been a considerable amount of theoretical work in this direction [3–13]. In the neutrino

flavour basis (i.e. diagonal charged lepton mass basis), it has been shown that the TB

neutrino mass matrix is invariant under S,U transformations [14]

Mν
TB = SMν

TBS
T = UMν

TBU
T . (1.2)

A very straightforward argument [15] shows that this neutrino flavour symmetry group has

only four elements corresponding to Klein’s four-group ZS
2 ×ZU

2 . By contrast the diagonal
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charged lepton mass matrix (in this basis) satisfies a diagonal phase symmetry T . The

matrices S, T, U form the generators of the group S4 in the triplet representation, while

the A4 subgroup is generated by S, T .

Recently there have been two apparently conflicting claims in the literature concerning

the nature of the underlying family symmetry Gf of the Lagrangian responsible for the TB

lepton mixing matrix. It was originally claimed that S4 is the minimal family symmetry

describing leptons with TB mixing [14]. However this claim has recently been challenged

in [16] where it is argued that TB lepton mixing could arise from many possible candidate

family symmetries which need not contain S4 as a subgroup. Most recently the original

claim has been clarified to include a discussion of A4 and S3 in addition to S4 [17].

In this paper, motivated by the above debate, we discuss the relation between the

observed flavour symmetry of the neutrino mass matrix ZS
2 ×ZU

2 and the underlying family

symmetry of the Lagrangian Gf . We show that the flavour symmetry of the neutrino mass

matrix may originate from two quite distinct classes of models. The first class of models,

which we call direct models, are based on an A4 or S4 family symmetry, some of whose

generators are directly preserved in the lepton sector and are manifested as part of the

observed flavour symmetry. The second class of models, which we call indirect models, are

based on any family symmetry Gf which is completely broken in the neutrino sector, while

the observed neutrino flavour symmetry ZS
2 ×ZU

2 in the neutrino flavour basis emerges as

an accidental symmetry which is an indirect effect of the family symmetry Gf . In such

indirect models the flavons responsible for the neutrino masses break Gf completely so

that none of the generators of Gf survive in the observed flavour symmetry ZS
2 × ZU

2 .

In the direct models, the symmetry of the neutrino mass matrix in the neutrino flavour

basis (henceforth called the neutrino mass matrix for brevity) is a remnant of the S4

symmetry of the Lagrangian. For direct models, it is correct to say [14] that the Lagrangian

should contain S4 as a subgroup, where the generators S,U are preserved in the neutrino

sector, while the diagonal generator T is preserved in the charged lepton sector. For

example PSL(2, 7) = Σ(168) [15] contains S4 as a subgroup. If the family symmetry of

the underlying Lagrangian is A4, then in some cases this can lead to a direct model where

the T generator of the underlying Lagrangian symmetry is preserved in the charged lepton

sector, while the S generator is preserved in the neutrino sector, with the U transformation

of S4 emerging as an accidental symmetry due to the absence of flavons in the 1′,1′′

representations of A4 [10]. Typically direct models satisfy form dominance [11], and require

flavon F-term vacuum alignment, permitting an SU(5) type unification [10].

The main focus of this paper is on the indirect models in which the underlying family

symmetry of the Lagrangian Gf is completely broken, and the flavour symmetry of the

neutrino mass matrix ZS
2 × ZU

2 emerges entirely as an accidental symmetry, due to the

presence of flavons with particular vacuum alignments proportional to the columns of

UTB , where such flavons only appear quadratically in effective Majorana Lagrangian. We

emphasise that such vacuum alignments can be elegantly achieved using D-term vacuum

alignment, and catalogue the possible choices of discrete family symmetry Gf which are

consistent with this mechanism, namely the ∆(3n2) and ∆(6n2) groups, together with

other examples such as Z7 ⋊Z3. Although the presence of the underlying family symmetry
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Gf is crucial for producing such vacuum alignments, we shall show that the neutrino

flavour symmetry ZS
2 × ZU

2 in the neutrino flavour basis does not arise as a subgroup of

Gf but rather accidentally. However, since the family symmetry Gf only partly enforces

the required vacuum alignments, the ZS
2 × ZU

2 flavour symmetry can be easily violated,

possibly leading to a large reactor angle while accurately preserving the tri-bimaximal

solar and atmospheric predictions. The see-saw mechanism can be implemented in indirect

models using Constrained Sequential Dominance (CSD) [4, 18] and such models typically

permit SO(10) type unification [6].

In section 2 we give a novel derivation of the flavour symmetry of the neutrino mass ma-

trix which enables the flavons of the indirect models to be readily identified. In section 3 we

briefly discuss flavons of the direct models, then introduce the flavons of the indirect mod-

els. In section 4 we show how D-term vacuum alignment may be used for indirect models,

and identify the possible classes of family symmetry which are consistent with a particu-

larly simple and useful term in the flavon potential. Section 5 shows how the type I see-saw

mechanism can be applied to indirect models using CSD. Section 6 concludes the paper.

2 The flavour symmetry of the neutrino mass matrix

In this section we give a novel derivation of the flavour symmetry of the neutrino mass

matrix in the neutrino flavour basis which enables the flavons of indirect models to be

easily identified. In the neutrino flavour basis, in which the charged lepton mass matrix

is diagonal and the TB mixing arises from the neutrino sector, the effective neutrino mass

matrix, denoted by Mν
TB , may be diagonalised as,

Mν
diag = UT

TBM
ν
TBUTB = diag (m1, m2, m3) . (2.1)

Given UTB, this enables Mν
TB to be determined in terms of neutrino masses,

Mν
TB = m1Φ1Φ

T
1 +m2Φ2Φ

T
2 +m3Φ3Φ

T
3 , (2.2)

corresponding to the orthonormal column vectors

Φ1 =
1√
6




−2

1

1


 , Φ2 =

1√
3




1

1

1


 , Φ3 =

1√
2




0

1

−1


 , (2.3)

which are just equal to the columns of UTB ,

UTB = (Φ1,Φ2,Φ3) (2.4)

with the orthonormality relations,

ΦT
i Φj = δij . (2.5)

It is convenient to define the matrices

Gi = ΦiΦ
T
i , (2.6)
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in terms of which the neutrino mass matrix is simply written,

Mν
TB = m1G1 +m2G2 +m3G3, (2.7)

and

UT
TBG1UTB = diag (1, 0, 0) ,

UT
TBG2UTB = diag (0, 1, 0) , (2.8)

UT
TBG3UTB = diag (0, 0, 1) .

We aim to find the symmetry transformations G which leave the TB neutrino mass

matrix in eq. (2.2) invariant, as in eq. (1.2), which implies that,

GΦiΦ
T
i G

T = ΦiΦ
T
i . (2.9)

Eq. (2.9) implies that

GΦi = ηiΦi, (2.10)

where ηi = ±1. For a given choice of ηi we can easily find the corresponding real orthogonal

matrix G, since it is diagonalised by the matrix UTB = (Φ1,Φ2,Φ3) whose columns are the

eigenvectors Φi with eigenvalues ηi,

UT
TBGUTB = diag (η1, η2, η3) . (2.11)

Then, by inverting eq. (2.11), we find a set of eight choices of G corresponding to the set

of choices of ηi,

G ∈ Gη1,η2,η3
≡ η1G1 + η2G2 + η3G3. (2.12)

For example, G+++ = I, the unit matrix, and we can define S = G−+−, U = G−−+, which

are explicitly given as,

S =
1

3




−1 2 2

2 −1 2

2 2 −1


 , U = −




1 0 0

0 0 1

0 1 0


 . (2.13)

We can write

S = −I + 2G2, U = −I + 2G3. (2.14)

In general the multiplication law for the Gη1,η2,η3
is extremely simple,

Gη1,η2,η3
Gη′

1
,η′

2
,η′

3
= Gη1η′

1
,η2η′

2
,η3η′

3
. (2.15)

Eq. (2.15) follows from

GiGj = δijGi, (2.16)

which follows from the orthonormality relations in eq. (2.5), as does,

GiΦj = δijΦi. (2.17)
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From eq. (2.15) it is easy to see that S,U form a four element group together with the

unit matrix I, with the fourth element X = G+−− being given by X = SU = US, where

all elements have determinant given by η1η2η3 equal to plus one. The remaining four

transformations with negative determinant given by −I,−S,−U,−X clearly do not form

a group. To summarise, Klein’s four-group ZS
2 × ZU

2 is the flavour symmetry of the TB

neutrino mass matrix with elements

G ∈ (G+++, G−+−, G−−+, G+−−) ≡ (I, S, U,X) (2.18)

in the notation of eq. (2.12).

3 Flavons of direct and indirect models

3.1 The flavour symmetry problem

The typical Lagrangian (or superpotential) of interest generically consists of two parts, the

Yukawa sector and the Majorana sector. The Yukawa sector is of the form,

LYuk ∼ ψiY
Yuk
ij ψc

jH , (3.1)

while the effective Majorana sector is of the form

LMaj ∼ ψiY
Maj
ij ψjHH , (3.2)

where Y Yuk
ij and Y Maj

ij are Yukawa and Majorana couplings, respectively, while H are Higgs

fields. When the Higgs develop their VEVs, and ψ are identified with left-handed lepton

fields L, while ψc are identified with charged conjugated right-handed charged leptons such

as ec, the Yukawa operators lead to the charged lepton mass matrix Me
ij ∝ Y e

ij, while the

effective Majorana operators lead to a neutrino Majorana mass matrix Mν
ij ∝ Y ν

ij .

We have already seen that the TB neutrino mass matrix is invariant under S,U trans-

formations in eq. (2.13) while the diagonal charged lepton mass matrix is invariant under

the phase transformation T = diag(1, ω2, ω) where ω = e2πi/3. At first sight it appears

paradoxical that LYuk and LMaj could respect different flavour symmetries since the lepton

doublets L are common to both. Indeed, with Y Yuk
ij and Y Maj

ij being simply numbers, a

symmetry transformation L→ V L in one sector would entail an identical symmetry trans-

formation in the other. Thus V would be a symmetry of both the neutrino and the charged

lepton mass matrix.

The resolution to this problem is intrinsically related to the origin of the Yukawa

couplings. If the Yukawa couplings are generated dynamically by the VEVs of flavon

fields, then it is possible to have different symmetries in the Yukawa and Majorana sectors.

The idea is that the complete high energy theory Lagrangian, including both LYuk and

LMaj, would both respect some family symmetry Gf due to the presence of flavons φYuk

and φMaj, where φYuk appears in LYuk while φMaj appears in LMaj,

LYuk ∼ ψφYukψcH , (3.3)

LMaj ∼ ψφMajψHH , (3.4)
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where both terms are invariant under Gf , and we have suppressed flavour indices, order

unity coefficients and dimensional mass scales. Generically φYuk and φMaj may represent

either a single flavon or a polynomial of flavons of a particular type. When the flavons

develop VEVs the family symmetry is spontaneously broken in such a way that the full

family symmetry is not apparent in either of the low energy Lagrangians, only the observed

flavour symmetries corresponding to S,U in LMaj and T in LYuk.

3.2 The flavons of direct models

In direct models, as discussed in the Introduction, we should have Gf = S4 or a group that

contains S4 as a subgroup (or Gf = A4 as discussed below). In this approach one seeks to

identify the symmetry generators S,U, T respected by LMaj and LYuk, below the Gf = S4

symmetry breaking scale, with the original generators contained in S4. One introduces

three types of flavon denoted as φS , φU , φT , which each preserves a particular generator,

in other words the VEVs of these flavons are eigenvectors of different generators of Gf = S4

with eigenvalues of +1,

S〈φS〉 = +1〈φS〉, U〈φU 〉 = +1〈φU 〉, T 〈φT 〉 = +1〈φT 〉, (3.5)

where φS,T ∼ 3 are in the triplet representation and φU ∼ 2 are in the doublet represen-

tation of S4. With eq. (3.5) the flavon VEVs 〈φS〉 and 〈φU 〉 are both left invariant under S

as well as under U .1 In addition, the singlet flavon φI VEV preserves all the generators.

In the effective theory the flavons φS,U enter the effective lepton operator linearly, so that

φMaj is a linear combination of φS , φU and φI , while the flavon φT enters the Yukawa

operators linearly, with φYuk ∼ (φT + φI),

LYuk ∼ ψ(φT + φI)ψ
cH , (3.6)

LMaj ∼ ψ(φS + φU + φI)ψHH, (3.7)

where in the Majorana Lagrangian ψ ∼ 3 represents lepton electroweak doublets in the

triplet representation of S4, the Higgs electroweak doublets H ∼ 1 are S4 singlets and

we have suppressed flavour indices, order unity coefficients and dimensional mass scales.

As a consequence, in direct models, all the flavon VEVs contained in φYuk preserve the

T generator, while all the flavon VEVs contained in φMaj preserve the S,U generators of

the original family symmetry Gf . Depending on the full symmetries of the model, φI may

be replaced by a pure number, leading to different suppressions between the terms in the

Yukawa and/or Majorana Lagrangian.

The type I see-saw mechanism [19] in direct models exploits the flavons φS , φU , φI

in eq. (3.5). In general we could consider an S4 model of the following form, suppressing

1The generators of the doublet representation are S =

 

1 0

0 1

!

, U =

 

0 1

1 0

!

, T =

 

ω 0

0 ω2

!

. Therefore

the VEV of the doublet φU is trivially also an eigenvector of S with eigenvalue +1. Concerning the triplets

in the basis of eq. (2.13) the eigenvector of S with eigenvalue +1 is 〈φS〉 ∝ Φ2. In S4 there are two distinct

triplet representations which differ in the sign of the U generator in eq. (2.13). In the case that φS is in

the triplet representation which corresponds to the positive sign of U , then 〈φS〉 ∝ Φ2 also preserves the

U generator.
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flavour indices, order unity coefficients and dimensional mass scales,

LYuk
N ∼ L(φS + φU + φI)N

cH , (3.8)

LMaj
N ∼ N c(φS + φU + φI)N

c , (3.9)

where L represents lepton electroweak doublets, and N c are the CP conjugated right-

handed neutrinos. Clearly the S,U subgroups of S4 are preserved both in the neutrino

Yukawa sector and the Majorana sector. Then, after the see-saw mechanism, the same

symmetries S,U must be apparent in the effective neutrino mass matrix. Typically both

the lepton doublets L and the right-handed neutrinosN c are taken to be triplets of S4 or A4.

The A4 models in [10] provide a convenient example of the application of A4 to pro-

ducing the neutrino flavour symmetry in a direct way. These models are very well known

so here we only recall some of the salient features of these models. The group A4 [3] is

a group that describes even permutations of four objects. It has two generators, S and

T , and four inequivalent irreducible representations, 1, 1′, 1′′ and 3. The S generator of

the A4 family symmetry survives in the Majorana sector and becomes part of the neutrino

flavour symmetry, while the U transformation of S4 appears as an accidental symmetry of

the neutrino mass matrix arising from the absence of flavons in the 1′,1′′ representations of

A4. Such A4 examples satisfy Form Dominance as discussed in [11], i.e. the neutrino mass

matrix may be diagonalised by the TB matrix independently of the precise values of the

underlying parameters. However in such models each physical neutrino mass results from

the VEVs of different flavons, so some mild tuning of flavon VEVs is required in order to

achieve a neutrino mass hierarchy, as discussed in [11].

3.3 The flavons of indirect models

In indirect models the family symmetry Gf need not be identified with S4 or a group

containing S4 as a subgroup. The idea is that the generators S,U, T corresponding to

the flavour symmetries respected by LMaj and LYuk, below the Gf symmetry breaking

scale, appear as accidental symmetries. Of course, the family symmetry group Gf will

contain symmetry generators, but all elements obtained from these generators will be

broken completely by the flavon VEVs. Nevertheless, the combination of flavon VEVs

appearing in φMaj will respect the S,U symmetry of the neutrino mass matrix, while the

combination of flavon VEVs appearing in φYuk will respect the T symmetry of the charged

lepton mass matrix (at least approximately), even though neither ZS
2 × ZU

2 nor ZT
3 are

subgroups of Gf . In the cases where Gf contains some of the elements of S4 what happens

is that all these elements will be broken by the flavon VEVs, and new ones, analogous to the

original ones but in a different basis, will be accidentally restored in the low energy theory.

In indirect models one introduces triplet (or anti-triplet) flavons of the family symmetry

Gf , which we refer to as φ1, φ2, φ3, which are arranged to get VEVs vi in the directions

of the orthonormal column vectors in eq. (2.3), namely,

〈φ1〉 = v1Φ1, 〈φ2〉 = v2Φ2, 〈φ3〉 = v3Φ3. (3.10)

The flavon VEV alignment φ3 was first discussed in [20] and the analysis was extended to

include the flavon VEV alignment φ2 in [4, 5]. The alignment of the flavons φ2, φ3 was

– 7 –
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subsequently discussed in the framework of discrete family symmetries using F-terms in [7]

and using D-terms in [8, 9]. The introduction of the flavon φ1 was discussed in [11]. The

possibility that the three flavons φi could be re-interpreted in terms of string instantons

was discussed in [21], although no instanton alignment mechanism was proposed.

In the effective theory the flavons φ1,2,3 are arranged to enter the effective lepton

operator quadratically, so that φMaj consists of quadratic combinations of flavons combined

as outer products φ1φ
T
1 , φ2φ

T
2 and φ3φ

T
3 so that the TB form of the neutrino mass matrix

in eq. (2.2) is reproduced when the flavons get their VEVs,

LMaj ∼ ψ
(
φ1φ

T
1 + φ2φ

T
2 + φ3φ

T
3

)
ψHH, (3.11)

where ψ ∼ 3 represent lepton doublets in the real (complex) triplet representation of Gf ,

while φi are triplets (anti-triplets) of Gf , and we have suppressed flavour indices, order

unity coefficients and dimensional mass scales. The required outer product structure of the

quadratic flavons generally arises from a see-saw mechanism, as discussed in section 5.

In indirect models the flavon VEVs in eq. (3.10) break all the elements of the underlying

family symmetry Gf , while the above quadratic combinations of VEVs preserve all the

group elements G of the effective neutrino flavour symmetry,

G
〈
φiφ

T
i

〉
GT =

〈
φiφ

T
i

〉
, (3.12)

for all i = 1, 2, 3, which follows from eqs. (2.9). In fact all the results of the previous section

apply here with the column vectors Φi replaced by the flavon VEVs 〈φi〉 in eq. (3.10). In

particular from eq. (2.10),

G〈φi〉 = ηi〈φi〉, (3.13)

which shows that the flavon VEVs individually break the flavour symmetry of the neutrino

mass matrix, corresponding to the group elements in eq. (2.18), due to the presence of

the minus signs in the ηi, though their quadratic effect is to preserve the neutrino flavour

symmetry. For example, for the group element S = G−+− = −G1 + G2 − G3, it is clear

from eq. (2.17) that S〈φ1〉 = −〈φ1〉, S〈φ2〉 = 〈φ2〉, S〈φ3〉 = −〈φ3〉, that the VEVs 〈φ1〉 and

〈φ3〉 break the symmetry S.

We emphasise that, although the quadratic combinations of flavons preserve an acci-

dental neutrino flavour symmetry, such quadratic combinations will in general break the

underlying family symmetry Gf . This does not matter as the only role of Gf is to yield

flavon vacuum alignments of the type in eq. (3.10).

4 D-term vacuum alignment in indirect models

The mechanism for vacuum alignment is crucial to the success of any model which pur-

ports to explain tri-bimaximal mixing. In the case of direct models, the usual mechanism

of vacuum alignment is based on F-term alignment which exploits driving fields in the

superpotential as discussed in [10]. This mechanism is also available to indirect models

as discussed in [7]. However, in the case of indirect models, an additional and elegant
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possibility for vacuum alignment becomes available that is not possible for direct models,

namely D-term vacuum alignment introduced in [8, 9] as discussed in section 4.1.

The reason that D-term vacuum alignment is not possible in the direct models will

be explained below, but is essentially related to the fact that a particular choice of basis

is required for the D-term alignment mechanism to work, and this basis is different from

that of the neutrino flavour symmetry which must therefore arise accidentally as in indirect

models. In fact the D-term vacuum alignment mechanism is so elegant that one may regard

it as a primary motivation for considering indirect models rather than direct models.

4.1 Flavon potential and allowed family symmetries Gf

In the previous section we emphasised that the flavons invoked in indirect models generally

break the family symmetry Gf completely. An elegant way to obtain the alignments of

eq. (2.3) is to start with a flavon scalar potential of the form

V = −m2
∑

i

φi†φi + λ

(
∑

i

φi†φi

)2

+ ∆V , (4.1)

where the index i labels the components of a particular flavon triplet φ and

∆V = κ
∑

i

φi†φiφi†φi . (4.2)

In a non-supersymmetric theory this potential may simply be written down. However, in a

supersymmetric theory, the quartic terms may arise from D-terms, after which this vacuum

alignment mechanism is named [8, 9], which take the form

[
χ†χ(φ†φφ†φ)

]
D
,

where the F-component of theGf singlet χ acquires a VEV. Hence supersymmetry is broken

and the scalar potential V gets a contribution of the type φ†φφ†φ. The quadratic term on

the other hand can originate from a soft supersymmetry breaking mass term, where the

mass squared of a given flavon is driven negative by radiative corrections at some scale Λ,

leading to a VEV for that flavon set by the scale Λ. As the different flavons have different

superpotential couplings to heavy states, and since the soft masses run logarithmically with

energy scale, the Λ scales defined above may differ greatly for the different flavons. Thus

a hierarchy between the VEVs of various flavon fields is possible, and also stable, in the

framework of the radiative breaking mechanism [8, 9].

Only the term ∆V in eqs. (4.1), (4.2) determines the alignment. For κ > 0 we obtain

the alignment Φ2, while κ < 0 can give rise to Φ̃0 = (1, 0, 0)T . In concrete models, where

both of these alignments are typically required, the mixing terms between the two corre-

sponding flavon fields should be suppressed. Although such mixing cannot be forbidden

by symmetries, it can be suppressed or even forbidden by invoking messenger arguments.

Using SU(3) invariant orthogonality conditions the alignments Φ3 and Φ1 can then be ob-

tained successively [8, 22], where additional undesirable invariants may be suppressed or

forbidden by a combination of symmetries and messenger arguments. The question we want
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to pursue in the following is which family symmetries allow for the invariant in eq. (4.2).

Obviously, Gf must admit at least one triplet representation. Constraining to special uni-

tary matrices, the generators of the most general symmetry transformations of eq. (4.2) are

D =



eiθ1 0 0

0 eiθ2 0

0 0 e−i(θ1+θ2)


 , A =




0 1 0

0 0 1

1 0 0


 , B = −




0 0 1

0 1 0

1 0 0


 . (4.3)

Note that these matrices are found among the generators of the C and D series of groups

listed long ago by Miller, Blichfeldt and Dickson [23].

Choosing θ1 = 0 and θ2 = 2πl/n we immediately recover the group ∆(6n2) [24, 25].

Dropping the generator B, we obtain the group ∆(3n2) [24, 26] by identifying θ1 =

−2π(k + l)/n and θ2 = 2πl/n. For these two series of non-Abelian finite groups, n, k, l are

positive integers with k, l < n. A particular choice of l (and k) corresponds to a particular

triplet representation of the respective group. The Frobenius group Z7 ⋊ Z3 = T7 [13, 27]

can be generated from D and A by setting θ1 = θ2/2 = 2π/7. Similar groups that have

not yet found application as family symmetries, although their order is relatively low, are

e.g. Z13 ⋊ Z3 with θ1 = θ2/3 = 2π/13 or Z19 ⋊ Z3 with θ1 = θ2/7 = 2π/19, see [28].

4.2 The choice of basis: the Gf = S4 example

It is easy to convince oneself that the neutrino flavour symmetry as given in eq. (2.18) is

not a subgroup of any of the above finite groups. In the special case of ∆24
∼= S4, which is

generated by

S′ ≡ D(θ1=0,θ2=π) , T ′ ≡ A , U ′ ≡ A2B , (4.4)

one might be tempted to think that, since S4 is involved, that the D-term alignment

mechanism leads to an example of a direct model. However this conclusion would be

wrong, since it is clear that the generator S of the neutrino flavour symmetry in eq. (2.13)

is not an element of the underlying group defined in the basis of eq. (4.4). In general

such arguments, more fully developed below, will make it clear that the D-term alignment

mechanism is incompatible with the direct models, but well suited for the indirect models.

We now show that the choice of the basis in eq. (4.3) is crucial for having the invariant

in eq. (4.2), and thus for generating the alignment Φ2. Using a different basis for Gf , the

flavon potential ∆V would generally change its form

∑

i

φi†φiφi†φi −→
∑

i,j,k,l,m

WjiW
†
ikWliW

†
im φ′

j†
φ′

k
φ′

l†
φ′

m
, (4.5)

where W denotes the unitary basis transformation φ′ = Wφ. In this new form, the minima

of ∆V are usually much less apparent. However, since we already know how the flavon

potential is minimised in the original basis, we can trace back the structure of the vacuum

for φ′ to the alignment of φ. It will turn out that no “nice” alignment can be obtained for

φ′. To be specific, let us consider the case κ > 0. In the original basis, the flavon potential
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∆V leads to an alignment

Φ̃2 =
1√
3



eiϑ1

eiϑ2

eiϑ3


 . (4.6)

It is important to notice that the phases are completely undetermined by the flavon po-

tential of eq. (4.2). However these phases are unphysical since they would correspond to

having phases in the second column of UTB which can be absorbed into the charged lepton

fields. What matters is the magnitude of the components of eq. (4.6) and the orthogonality

of the flavon VEVs Φ̃1, Φ̃2, Φ̃3. In indirect models it is a pure convention to set the phases

of eq. (4.6) to zero, leading to Φ2. Nonetheless, the potential ∆V of eq. (4.2) is minimised

by the more general alignment of eq. (4.6). Changing to the basis φ′, an analogous contin-

uum of minima will persist, however, the explicit structure of the set of alignment vectors

can appear arbitrary.

For example in Gf = S4, suppose we perform a unitary basis transformation [10]

W =
1√
3




1 1 1

1 ω ω2

1 ω2 ω


 , ω = e2πi/3 , (4.7)

to take us from the basis of eq. (4.4) to the neutrino flavour basis of eq. (2.13),

S = WS′W † , T = WT ′W † , U = WU ′W † = U ′ . (4.8)

Note that the third generator is identical in both bases. Nonetheless the neutrino flavour

symmetry ZS
2 ×ZU

2 is not a subgroup of S4 generated by S′, T ′, U ′. Performing the vacuum

alignment in the basis of eq. (4.4), would lead to eq. (4.6), which would appear in the

neutrino flavour basis as,

Φ̃′
2 = W Φ̃2 =

1

3




eiϑ1 + eiϑ2 + eiϑ3

eiϑ1 + ωeiϑ2 + ω2eiϑ3

eiϑ1 + ω2eiϑ2 + ωeiϑ3


 . (4.9)

In general the original alignment would appear very arbitrary in the neutrino flavour basis,

as can be seen from the following examples,

W
1√
3




1

1

1


 =




1

0

0


 , W

1√
3




1

−1

−1


 =

1

3



−1

2

2


 , W

1√
3




1

i

−i


 =

1

3




1

1 −
√

3

1 +
√

3


 .

These examples illustrate how dramatically the alignment vectors Φ̃′
2 in the new basis

change with the phases ϑi. Since all of them minimise the flavon potential in the basis

φ′, the invariant of eq. (4.5) does not seem to give rise to useful alignments. That is not

to say that a basis transformation alters physics! Rather from the practical point of view

the choice of a good basis is important in devising an indirect model, starting from “nice”

flavon alignments which are then coupled to the fermions to generate their mass matrices.
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To summarise, in the S4 example with D-term vacuum alignment, the above argument

shows that the model should be constructed in the S′, T ′, U ′ basis of eq. (4.4) where the

alignment term in the potential is given by eq. (4.2) leading to the vacuum alignment Φ̃2 in

eq. (4.6). With the Gf = S4 model constructed in the basis S′, T ′, U ′, the resulting neutrino

mass matrix would have a flavour symmetry corresponding to the generators S,U . Due

to the difference between the two bases the neutrino flavour symmetry ZS
2 × ZU

2 is not a

subgroup of the group generated by S′, U ′, T ′ even though U = U ′. Furthermore, working

in a convenient convention where the phases may be dropped, i.e. Φ̃2 → Φ2, the flavon

alignments Φ1,Φ2,Φ3 guarantee that S4 is broken completely: Φ1 breaks all elements of

S4, while Φ2 and Φ3 are left invariant by distinct generators,

T ′Φ2 = Φ2 , U ′Φ3 = Φ3 . (4.10)

Having at least two flavons contributing to the neutrino sector, the underlying family

symmetry will therefore be broken completely. We conclude that in the Gf = S4 family

symmetry model with D-term vacuum alignment, the neutrino flavour symmetry arises ac-

cidentally, with the flavon alignment Φ2 being directly enforced by the Gf invariant term in

eq. (4.2). The alignment of the other flavons Φ1, Φ3 of the indirect model arise from orthog-

onality arguments and are not enforced directly from a Gf invariant like eq. (4.2), making

their alignment more model dependent, see e.g. [22]. This has important phenomenologi-

cal implications, as discussed later in the context of an indirect Gf = A4 example where

similar comments apply.

4.3 Additional invariants non-grata

Working in the basis of eq. (4.3), we have seen that various underlying non-Abelian discrete

family symmetries are conceivable. They all allow for the two quartic invariants of type

3333, where all triplets are assumed to be identical,

I0 =

(
∑

i

φi†φi

)2

, I1 =
∑

i

φi†φiφi†φi . (4.11)

Depending on Gf there may however be additional invariants which we identify in the

following.

• Z7 ⋊ Z3: The symmetric Kronecker product of two triplets reads [13, 27]

(3 × 3)s = 3 + 3 .

Multiplying this with its complex conjugate, i.e.

(3× 3)s ×
(
3 × 3

)
s

=
(
3 + 3

)
×
(
3 + 3

)
,

it is evident that only two independent invariants of type 3333 are possible, namely

I0 and I1. The result is identical for the groups Z13 ⋊ Z3 and Z19 ⋊ Z3 where

(3 × 3)s = 3′ + 3 with 3′ different from 3.
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• ∆(3n2): In this case the triplets are labelled by two indices k, l. The symmetric

product of two identical 3(k,l) becomes [26]

(
3(k,l) × 3(k,l)

)
s

= 3(2k,2l) + 3(−k,−l) .

Assuming that 3(k,l) is a faithful representation of ∆(3n2), the two symmetric triplets

on the right-hand side are different triplets for n > 3. Therefore, we find only two

invariants in these cases, I0 and I1.

With n = 2 we recover ∆12
∼= A4. As there is only one real triplet in A4, the first

symmetric triplet decomposes into a sum of one-dimensional representations,

n = 2 : (3 × 3)s = 1 + 1′ + 1′′ + 3 ,

giving rise to four independent invariants. In addition to those of eq. (4.11) we get [9]

I2 = φ1φ1φ2†φ2† + φ2φ2φ3†φ3† + φ3φ3φ1†φ1† , (4.12)

and its complex conjugate I2̄ = I†
2.

With n = 3 we obtain the group ∆27 with one triplet and its complex conjugate. In

this case, both symmetric triplets are identical,

n = 3 : (3 × 3)s = 3 + 3 ,

yielding four independent invariants. Besides I0 and I1 which have been applied

in [8] we find (compare [13])

I3 = φ1φ1φ2†φ3† + φ2φ2φ3†φ1† + φ3φ3φ1†φ2† , (4.13)

and its complex conjugate I3̄ = I†
3.

• ∆(6n2): For these groups there are two types of triplets (q = 1, 2) which differ by

a sign for the generator B; each type of triplet is labelled by an additional index l.

The symmetric Kronecker products take the form [25]
(
3q(l) × 3q(l)

)
s

= 31(2l) + 31(−l) .

With 3q(l) being a faithful representation of ∆(6n2), the two triplets on the right-

hand side are different triplets for n > 3, so that only two quartic invariants are

obtained, I0 and I1.

With n = 2 we have ∆24
∼= S4, which has only two real triplets. Fur-

thermore, the first symmetric triplet decomposes into a one-dimensional plus a

two-dimensional representation,

n = 2 : (3q × 3q)s = 1 + 2 + 31 ,

from which we can construct three independent invariants. In addition to those of

eq. (4.11) we find

I4 = I2 + I2̄ . (4.14)
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With n = 3 the group ∆54 is generated, which has two complex triplets and their

conjugates. The symmetric Kronecker products are

(
3q(l) × 3q(l)

)
s

= 31(−l) + 31(−l) , (4.15)

leading to four independent invariants: I0, I1, I3 and I3̄. Note that these are identical

to the invariants of ∆27.

As we are interested in family symmetries which give rise to “nice” flavon alignments, it

seems desirable to pick Gf such that only the invariants in eq. (4.11) are allowed. Additional

invariants may spoil the structure of the vacuum derived from ∆V of eq. (4.2) unless they

are sufficiently suppressed. From that point of view, ∆
(
3n2
)

and ∆
(
6n2
)

with n > 3, as

well as Z7 ⋊ Z3 together with some other examples such as Z13 ⋊ Z3 and Z19 ⋊ Z3 are

preferred candidates for the underlying family symmetry in indirect models.

4.4 Alternative useful invariants

We conclude this section by mentioning that one could alternatively make use of other

invariants in the flavon potential that give rise to vacuum alignments in indirect models.

One such example could be the term

I5 = φ1φ2φ3 , (4.16)

which is left invariant under D and A of eq. (4.3). In other words, the underlying discrete

family symmetry Gf in such a model could be Z7 ⋊ Z3 or ∆(3n2). One easily finds that

the flavon potential with

∆V = κ
(
I5 + I†

5

)
, κ < 0 ,

is minimised by an alignment of type Φ̃2,

1√
3




eiϑ1

eiϑ2

e−i(ϑ1+ϑ2)


 .

5 The see-saw mechanism in indirect models

The type I see-saw mechanism [19] in indirect models exploits the flavons φi in eq. (3.10)

which are either triplets or anti-triplets of Gf depending on whether the representations

are complex. There are two approaches to the see-saw mechanism in indirect models, de-

pending on whether the right-handed neutrinos N c are singlets or triplets under the family

symmetry Gf , while the left-handed leptons L are always triplets of Gf . In both cases

we shall show how the quadratic combinations of flavons preserve an accidental neutrino

flavour symmetry of the neutrino mass matrix, in the effective Lagrangian after the see-saw

mechanism has taken place.
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5.1 Right-handed neutrino singlets N c
i ∼ 1

Consider the see-saw Lagrangian,

LYuk
N ∼ Li

(
φi

1N
c
1 + φi

2N
c
2 + φi

3N
c
3

)
H , (5.1)

LMaj
N ∼ M1N

c
1N

c
1 +M2N

c
2N

c
2 +M3N

c
3N

c
3 , (5.2)

where the diagonal forms of eqs. (5.1), (5.2) require additional symmetries. Note that the

Yukawa Lagrangian only involves the flavons φi linearly, not quadratically, and therefore

does not respect the flavour symmetry of the neutrino mass matrix which only emerges

after the see-saw mechanism. Since N c
i ∼ 1, the combination of Li ∼ 3 and φi ∼ 3 (or

φi ∼ 3 if the representations are complex) must yield a singlet of Gf . It is important to note

that these models are formulated in a basis where the family indices are trivially summed

over. After the see-saw mechanism takes place, this results in an effective Lagrangian of

the form of eq. (3.11),

LMaj ∼ L

(
φ1φ

T
1

M1
+
φ2φ

T
2

M2
+
φ3φ

T
3

M3

)
LHH. (5.3)

Thus we see the appearance of the quadratic combinations of flavons which serve to preserve

an accidental neutrino flavour symmetry of the neutrino mass matrix, in the effective

Lagrangian after the see-saw mechanism has taken place. In matrix notation, when the

flavons get their VEVs in eq. (3.10) the three columns of the Dirac mass matrix MD are

proportional to the VEVs of the three flavons, and the right-handed neutrino mass matrix

is diagonal,

MD = (a1Φ1, a2Φ2, a3Φ3), MRR = diag(M1,M2,M3), (5.4)

where ai are constants. The resulting effective neutrino mass matrix is thus

Mν = MDM
−1
RRM

T
D =

a2
1

M1
Φ1Φ

T
1 +

a2
2

M2
Φ2Φ

T
2 +

a2
3

M3
Φ3Φ

T
3 , (5.5)

which is of TB form in eq. (2.2) where we identify the physical neutrino mass eigenvalues as

m1 = a2
1/M1, m2 = a2

2/M2, m3 = a2
3/M3. This also corresponds to Form Dominance [11],

with each column of MD constructed from the VEV of a different flavon, so no flavon VEV

tuning is required to achieve a neutrino mass hierarchy. This corresponds to so-called

Natural Form Dominance [11].

The A4 model in [9] provides a convenient example of the general mechanism described

above for the realisation of neutrino flavour symmetry in an indirect way using right-handed

neutrino singlets. It also provides an example of the use of CSD [4, 18] to generate a strong

neutrino mass hierarchy. The lepton doublets are taken to be triplets ofA4, L ∼ 3, while the

right-handed neutrinos and right-handed charged leptons are all taken to be trivial singlets

of A4. In this model the see-saw Lagrangian is taken to be, at leading order, similar to

the form in eqs. (5.1), (5.2), but with some of the right-handed neutrinos re-labelled, and

involves the A4 triplet flavons φi
2 ∼ 3, φi

3 ∼ 3 plus a new triplet flavon φi
0 ∼ 3,

LYuk
N ∼ Li

(
φi

3N
c
1 + φi

2N
c
2 + φi

0N
c
3

)
H , (5.6)

LMaj
N ∼ M1N

c
1N

c
1 +M2N

c
2N

c
2 +M3N

c
3N

c
3 , (5.7)
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where the assumed forms in eqs. (5.6), (5.7) require additional symmetries as discussed

in [9]. The flavons φ2, φ3 have the alignments as in eq. (3.10) while the flavon φ0 has an

alignment of the form,

〈φ0〉 =




0

0

1


 v0 ≡ Φ0v0 . (5.8)

The charged lepton Yukawa Lagrangian also takes a similar form to eq. (5.6), with the

flavon φ0 being responsible for the third family charged lepton Yukawa coupling,

LYuk
lep ∼ Li(φ

i
3e

c
R + φi

2µ
c
R + φi

0τ
c
R)H . (5.9)

The resulting charged lepton mass matrix is approximately diagonal due to the strong

charged lepton mass hierarchy with the dominant (3, 3) Yukawa coupling provided by the

φ0 VEV. As pointed out in section 4.1, the required hierarchy between different flavon VEVs

can be obtained in the framework of radiative symmetry breaking. The actual model in [9]

is more complicated than this, since it unifies the quarks and leptons into a Pati-Salam

gauge group, under which for example the right-handed neutrinos are not singlets, and

shows how all the fermion mass hierarchies and mass splittings may be achieved.

In this A4 model the neutrino flavour symmetry arises accidentally as a result of two

effects. The first effect is CSD [4, 18] in which the right-handed neutrino mass M3 is

so heavy2 that the third right-handed neutrino N c
3 effectively decouples from the see-saw

mechanism, rendering the effect of the flavon φ0 on the see-saw mechanism irrelevant [18].

The second effect is that the remaining two flavons φ2, φ3 which are relevant for the see-saw

mechanism lead to an effective Majorana Lagrangian after the see-saw mechanism of the

form of eq. (5.3),

LMaj ∼ L

(
φ3φ

T
3

M1
+
φ2φ

T
2

M2

)
LHH. (5.10)

Thus we see the appearance of the quadratic combinations of flavons which serve to preserve

an accidental neutrino flavour symmetry of the neutrino mass matrix, in the effective

Lagrangian after the see-saw mechanism has taken place. However, since the charged lepton

mass matrix is only approximately diagonal, TB neutrino mixing will receive corrections

from the charged lepton mixing angles [29].

An important feature of the indirect A4 model is that it is formulated in an SO(3)

type basis for which the product of two triplets a = (a1, a2, a3) ∼ 3 and b = (b1, b2, b3) ∼ 3

contains the invariant singlet given by the diagonal combination aibi = a1b1+a2b2+a3b3 ∼
1. In the A4 example [9] this implies that the generators in the triplet representation are

given by S′, T ′ of eq. (4.4), see also [3]. On the other hand these models reproduce the

neutrino flavour symmetry ZS
2 × ZU

2 , which however, is not a subgroup of the original A4

family symmetry. The reason for this is twofold: (i) the generator U is not an element of A4,

and (ii) the bases are different. Furthermore, the VEV of φ3 breaks all elements generated

2In the concrete model [9], additional symmetries are adopted so that the third term on the r.h.s. of

eq. (5.7) arises at a lower-dimensional level compared to the first and second term.
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from S′, T ′, while φ2 preserves the subgroup ZT ′

3 , the net effect being that no subgroup of

the underlying A4 symmetry can survive in either the neutrino or the charged lepton sector.

Contrary to the φ2 alignment which is obtained directly from the invariant in eq. (4.2),

the φ3 alignment emerges from subsequent orthogonality arguments and is thus more model

dependent, see e.g. [22]. While the alignment of φ2 may be altered by subleading correction,

it is possible for the VEV of φ3 to receive a leading order alignment of the form (ǫ, 1,−1),

where the value of ǫ is potentially sizable [22]. This would then result in a reactor angle

of order θ13 ∼ ǫ/
√

2, at the same time maintaining accurately the tri-bimaximal solar

and atmospheric predictions [22]. Such tri-bimaximal-reactor mixing of the type discussed

in [22] would then be a prediction of indirect models with such a leading order φ3 alignment.

5.2 Right-handed neutrino triplets N c
i ∼ 3

In this case the see-saw Lagrangian is taken to have the form, at leading order,

LYuk
N ∼ Li

(
φi

1φ
j
1 + φi

2φ
j
2 + φi

3φ
j
3

)
N c

jH , (5.11)

LMaj
N ∼ N c

i

(
φi

1φ
j
1 + φi

2φ
j
2 + φi

3φ
j
3

)
N c

j , (5.12)

where the Yukawa and Majorana Lagrangians are required to be diagonal in the flavon

types, up to a relabelling of right-handed neutrinos. Note that in this case both the Yukawa

and Majorana Lagrangian involve the flavons φi quadratically, and therefore in this case the

high energy see-saw theory respects the same flavour symmetry of the neutrino mass matrix

which will emerge after the see-saw mechanism, although of course the family symmetry

Gf is not respected by these quadratic flavon combinations.

As before we see the appearance of the quadratic combinations of flavons which serve

to preserve an accidental neutrino flavour symmetry of the neutrino mass matrix, in the

effective Lagrangian after the see-saw mechanism has taken place. In matrix notation,

when the flavons get their VEVs in eq. (3.10), the Dirac mass matrix MD is proportional

to a sum over outer products of the VEVs of the three flavons, while the right-handed

neutrino mass matrix takes the form of the TB neutrino mass matrix in eq. (2.2),

MD = a1Φ1Φ
T
1 + a2Φ2Φ

T
2 + a3Φ3Φ

T
3 , (5.13)

MRR = M1Φ1Φ
T
1 +M2Φ2Φ

T
2 +M3Φ3Φ

T
3 , (5.14)

where ai are constants and Mi are the right-handed neutrino mass eigenvalues. Clearly the

right-handed neutrino mass matrix is diagonalised by the tri-bimaximal mixing matrix,

UT
TBMRRUTB = diag (M1, M2, M3) . (5.15)

Hence we can write

M−1
RR =

Φ1Φ
T
1

M1
+

Φ2Φ
T
2

M2
+

Φ3Φ
T
3

M3
, (5.16)

using eq. (2.4). The resulting effective neutrino mass matrix is thus, from eqs. (5.13), (5.16),

using the orthonormality relations in eq. (2.5),

Mν = MDM
−1
RRM

T
D =

a2
1

M1
Φ1Φ

T
1 +

a2
2

M2
Φ2Φ

T
2 +

a2
3

M3
Φ3Φ

T
3 , (5.17)

– 17 –



J
H
E
P
1
0
(
2
0
0
9
)
0
9
3

as in eq. (2.2), where we identify the physical neutrino mass eigenvalues as m1 = a2
1/M1,

m2 = a2
2/M2, m3 = a2

3/M3.

The Gf = ∆27 model in [8] provides an example of the general mechanism described

above for the realisation of neutrino flavour symmetry in an indirect way using right-handed

neutrino triplets. It also provides an example of the use of CSD [4, 18] to generate a strong

neutrino mass hierarchy m1 ≪ m2,3 due to a very heavy third right-handed neutrino of

mass M3. The Yukawa Lagrangian is of the leading order form,

LYuk
N ∼ Li

(
φi

3φ
j
2 + φi

2φ
j
3 + φi

0φ
j
0

)
N c

jH , (5.18)

leading to a Dirac mass matrix of the form,

MD = a1Φ3Φ
T
2 + a2Φ2Φ

T
3 + a0Φ0Φ

T
0 , (5.19)

where ai are constants. The Majorana Lagrangian is of the leading order form,

LMaj
N ∼ N c

i

(
φi

2φ
j
2 + φi

3φ
j
3 + φi

0φ
j
0

)
N c

j , (5.20)

leading to the heavy Majorana masses,

MRR = M1Φ2Φ
T
2 +M2Φ3Φ

T
3 +M3Φ0Φ

T
0 , (5.21)

where Mi are the right-handed neutrino mass eigenvalues where we assume M1 < M2 ≪
M3. Assuming that the heaviest right-handed neutrino of mass M3 approximately decou-

ples, according to the CSD mechanism, the resulting effective neutrino mass matrix is thus,

from eqs. (5.19), (5.21), using the orthonormality relations in eq. (2.5),

Mν = MDM
−1
RRM

T
D ≈ a2

1

M1
Φ3Φ

T
3 +

a2
2

M2
Φ2Φ

T
2 , (5.22)

similar to eq. (2.2), wherem1 ≪ m2,3 is negligible and the remaining physical neutrino mass

eigenvalues are m3 = a2
1/M1, m2 = a2

2/M2. Note that in this case the Yukawa Lagrangian

involves off-diagonal flavon bilinears φiφj (i.e. two different flavon types) and therefore it

does not respect the flavour symmetry of the neutrino mass matrix which only emerges

after the see-saw mechanism.

6 Conclusion

In this paper we have shown that the flavour symmetry of the neutrino mass matrix may

originate from an underlying family symmetry in two quite distinct ways, either directly

or indirectly.

The direct models are typically based on S4 family symmetry or any family symmetry

that contains S4 as a subgroup (such as for example PSL(2, 7) = Σ(168) [15]) whose

generators S,U are directly preserved in the Majorana sector sector. In the case of direct

models the neutrino flavour symmetry appears directly as a result of a ZS
2 ×ZU

2 subgroup of

S4 being preserved in the effective Majorana Lagrangian by the flavons φS , φU , but not φT ,
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appearing in the Majorana sector. In the see-saw implementation of the direct models the

neutrino flavour symmetry is preserved also by the high energy see-saw theory, due to the

presence of the flavons φS , φU , but not φT , appearing in the see-saw Dirac and Majorana

Lagrangians as in eqs. (3.8), (3.9).

The main focus of the paper has been on indirect models which are based on any

family symmetry Gf which is completely broken and in which the observed lepton flavour

symmetry emerges as an accidental symmetry. In the case of indirect models the only role

of the underlying family symmetry Gf is to yield flavon alignments with φi proportional

to the three columns of UTB as in eq. (3.10). The flavon VEVs of indirect models break

the underlying family symmetry Gf , so that no remnant of this symmetry survives in the

low energy theory. The origin of the neutrino flavour symmetry is completely accidental

due to the quadratic appearance of such flavons in the effective Majorana Lagrangian.

Comparing the direct models to the indirect models it is seen that, for the direct

models, the flavons φS , φU appear in the Majorana sector as in eq. (3.7), while for the

indirect models it is the quadratic flavon combinations φiφ
T
i which appear in the Majorana

sector as in eq. (3.11), where such quadratic combinations accidentally preserve the neutrino

flavour symmetry and reproduce the TB neutrino mass matrix.

We have emphasised that the necessary vacuum alignments of indirect models can be

achieved using an elegant D-term vacuum alignment mechanism, together with orthogonal-

ity arguments, and we have catalogued the possible choices of family symmetry Gf which

are consistent with this mechanism. In this way we are led to the large classes of possi-

ble candidate family symmetries: ∆(3n2) and ∆(6n2), as well as Z7 ⋊ Z3 = T7 together

with similar examples such as Z13 ⋊ Z3 and Z19 ⋊ Z3 which so far have been ignored as

potentially interesting candidates for Gf . Although the presence of the underlying family

symmetry Gf is crucial for producing such D-term vacuum alignments, we have shown

that it does not include the neutrino flavour symmetry ZS
2 ×ZU

2 as a subgroup which must

therefore emerge as an accidental symmetry. We have explicitly shown how this works

for the case of Gf = S4 where D-term vacuum alignment implies an indirect, rather than

direct, realisation of the neutrino flavour symmetry.

We have seen that the see-saw implementation of the indirect models depends on

whether the right-handed neutrinos are singlets or triplets of the family symmetry Gf and

may be summarised as follows:

(i) If the right-handed neutrinos are singlets, then the flavons φi appear linearly in

the Dirac Lagrangian, as in eq. (5.1), so that the high energy see-saw theory does not

respect the low energy neutrino flavour symmetry of the resulting low energy effective

theory in eq. (5.3) which only involves the quadratic flavon combinations.

(ii) If the right-handed neutrinos are triplets, then the quadratic flavon combinations

φiφ
T
i may appear in both the high energy Dirac and Majorana Lagrangians, as in

eqs. (5.11), (5.12), which means that the high energy see-saw theory will respect

the low energy neutrino flavour symmetry in such cases. However in other cases of

indirect models in which the right-handed neutrinos are triplets, the right-handed

neutrinos may be ordered differently so that an off-diagonal flavon combination φiφ
T
j
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J
H
E
P
1
0
(
2
0
0
9
)
0
9
3

may appear in the high energy Dirac Lagrangian, as in eq. (5.18), with the diagonal

combinations φiφ
T
i only emerging in the low energy effective Majorana Lagrangian

so that the neutrino flavour symmetry only arises below the see-saw scale.

We have seen that explicit realistic see-saw implementations of indirect models are

typically based on CSD which implies a strong neutrino hierarchy and involves only the

two flavons with alignments along the second and third columns of the TB mixing matrix.

We have sketched existing examples of such models based on ∆12 = A4 and ∆27.

In conclusion, the main point we want to make in this paper is that the family sym-

metry group Gf need not have anything directly to do with the observed neutrino flavour

symmetry. In such indirect models the only role of Gf is to produce the vacuum alignments

proportional to the columns of UTB, as in eq. (3.10), where the quadratic appearance of

such flavons in the effective Majorana Lagrangian is responsible for the observed neutrino

flavour symmetry corresponding to TB mixing. In such indirect models, D-term vacuum

alignment provides an elegant vacuum alignment mechanism, not available to the direct

models. In fact the D-term vacuum alignment mechanism is so elegant that one may regard

it as a primary motivation for considering indirect models rather than direct models. The

D-term vacuum alignment mechanism only requires Gf to contain triplet representations

of the form of eq. (4.3) which is the case for the large classes of finite groups mentioned

above. Typically the VEV of the flavon φ2, proportional to the second column of UTB ,

will be derived directly from the Gf invariant term in eq. (4.2), whereas the alignments of

the other flavons such as φ3, proportional to the third column of UTB , are subsequently

obtained using orthogonality arguments. In such indirect models the alignment of φ3 is

therefore generally more model dependent and, for example, could lead to a large reactor

angle while preserving the TB solar and atmospheric angle predictions [22], providing a

smoking gun signature of the indirect origin of the neutrino flavour symmetry.
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